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Short First-Passage Times 

N .  G. van K a m p e n  I 

For diffusion in a monotonic potential field the probability distribution of first- 
passage times is computed in the limit of short times. The relation to the 
familiar long-time regime is pointed out. 
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1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider an overdamped  particle diffusing in a one-dimensional potential 
well. The probabil i ty density P(x, t) is governed by the equat ion 

- - =  0 a2P aP a U'(x)P+ ( x > 0 )  (1) 
at ax ~ x  2 

At x = 0 we take a reflecting boundary  (see Fig. 1) 

aP  
U'P+O~x=O ( x = 0 ,  a l l t )  (2) 

In order to find the probabil i ty distribution of the first-passage time at 
x = L when starting at some Xo > O, one has to solve (1) in the interval 
0 < x < L with condit ion (2) and 

P(L, t ) = 0 ,  P(x, 0) = 6 ( x -  x0) (3) 

The first-passage time distribution is then identical to the probabil i ty flow 
through L, 

~OP(x, t) 1 (4) f( t]Xo)= -O [_ Ox x=c 
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Fig. 1. 
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The interval in which the diffusion takes place. 

We assume throughout U'(x)> 0 for 0 ~< x ~< L. Then for small 0 the 
mean first-passage time will be very long, as it involves the Arrhenius 
factor. For  the present case the result is known, (1) 

~ ( c ) -  u(0)] 
= 0[u ' (0)  U'(L)] -1 exp 0 (5) 

This average corresponds to an exponential term e -t/~ in the distribu- 
tion f We are not concerned with the effort spent on computing ~ for more 
general cases. (2'3) 

We are concerned with the behavior of f(tlXo) at small values 
of t. The principal motivation is the nucleation problem. (4) As a concrete 
example, consider a large volume containing a supersaturated vapor. In 
order for the condensation to start, a nucleus has to form somewhere; 
this requires that a potential barrier (or rather a free energy barrier) is 
surmounted. As soon as this has been achieved somewhere in the volume 
the whole vapor condenses well-nigh instantaneously. Although it is 
unlikely for any given nucleus that it overcomes its barrier in a short time, 
it is not unlikely that this happens somewhere in the volume and that 
thereby the condensation is triggered. To compute that probability, one 
needs the short-time behavior of f(tlXo). 

An additional motivation is that in the case of stochastic resonance, if 
the biasing field is strong, the time to overcome the barrier may become 
short; but this case has not been studied. 
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2, T H E  D I S T R I B U T I O N  f(t[x) E X P R E S S E D  AS AN I N T E G R A L  

It is convenient, though not strictly necessary, to cast (1) into an 
eigenvalue problem of Schr6dinger type by setting (5) 

P(x, t) = e ~e-  U(x)/20 liD(x) (6) 

so that ~(x) obeys 

dZq5 I )  ~ 0 ~ - Z +  

[ � 8 9  

~:'(xy U"(x)] 
40 + - ~ j  ~ = 0 (7) 

05(L)=0 (s) 

Moreover, I multiply with 0 and set 20 = #: 

02~ " + [# - W(x)] ~ = 0 

W(x) = �88 c~ ' (xy-  �89 

(9) 

(10) 

Define ~/'(x, #) for any # as that solution of the second-order equation 
(9) that is given by the initial conditions 

~(0, #)= 1, ~b'(O, #)= -U'(O)/20 (11) 

For each value of x this function ~(x, #) is analytic in the entire complex 
#-plane. ~6) The eigenvalues #,, are the solutions of 

~(L, #) = 0 (12) 

The eigenfunctions qS(L, #~) are orthogonal, complete, but not normalized, 
so that 

r #.) ~(x, #.) ~(X-Xo) (13) 
Z ~ r #.y ax' - 

The desired solution of (1)-(3) may then be written 

r #.) r #n) 
P(x, t) = e -Ev(x)- u(xo)~/20 ~n e-"'/~ ~ qS(x', #.)2 dx' 

According to (4), one now has 

(14) 

qS(Xo, #~) ~(L, #n) 
f (tlXo) = --Oe- Ev(L)- V(xo)~/2o ~n e-mr~~ ~ qS(x', #n) 2 dx' (15) 
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This expression may be rewritten with the use of the following identity. 
Differentiate (9) with respect to #, to be indicated by a subscript #, 

02~0~ + [ # -  W(x)]q~u+ ~ = 0  (16) 

Multiply (9) with ~b~ and (16) with ~b, subtract, and integrate: 

0 2 [ ~ , _  ~ ,  ]~ = fo ~ ~2 ax (17) 

On the left, the boundary x = 0  does not contribute because q~.(0)= 
t 4 . ( 0 ) = 0  according to (11). If one inserts # = # . ,  one also has 

q~(L, #.)  = 0, so that one is left with the identity 

Oa~.(L, #.) ~'(L, #n) = 05(x, #n) 2 dx (18) 

Substitution of this identity in (15) gives 

f ( t l x o ) = - l e  E~(L) V(xo)l/ZO~ e .~ r (19) 
o . q~.(L, #.)  

This may be written in the form (see Fig. 2) 

- 1 e_U(L) - U(xo)120 fC e-ml~ qS(Xo,#) d 
f ( t[Xo) = 2~i0 qS(L, #) # (20) 

where C is the contour in the complex #-plane surrounding all #n. This 
remarkable integral expression for f ( t lXo)  is exact and will serve as the 
starting point of our calculation. 
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> 

Fig. 2. The integration contour around the poles. 
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3. A P P R O X I M A T I O N S  

When ~t lies on C one knows that W(x) - # r 0, so that for small 0 the 
WKB method may be used: 

r l  
(21) 

K(x, #) [W(x')-#] 1/2 dx' (22) 
" 0  

This neglects terms of order 0 in the exponent. Also a factor 

(23) 

ought to have been included in (21), but it does not affect the result of this 
section and has been omitted for simplicity. We also use (for typographical 
reason) fi = 1/0, so that fl is a large parameter. The integration constants 
are determined by the initial conditions (11 ), 

1 u'(o) 1 u'(o)  
A = 2 4K'(0, #)' B = ~ + 4K'(0, #) (24) 

For small 0, large fl, and Xo > 0 the first term of (21) dominates and 
one may omit the second one. Using this approximation in (20), one finds 

- 1 
f ( t lXo)=s {-- ~ fi[U(L)-- U(O)]} 

x fcexp{-fl[l~t-K(xo, lz)+ K(L,l~)]} d # (25) 

In order to apply the saddle point method I write h(#) for the quantity 
[ . . . ] .  The saddle point i~s is the solution of 

1 f[~ dx' 1/2 = 0 ( 2 6 )  
h'(~)= t - ~  0 [W(x')-~]  

The only possibility is that kt is real and less than m -= Min W(x). It is then 
seen from Fig. 3 that there is one /z~ for every t > 0. Moreover, #~ ~ - o e  
as t ~ 0, so that approximately for small t, 

L -  Xo _(L-- Xo'] 2 
t"~2(--#~)1/2' # s ~  \ 2t J (27) 
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Fig. 3. 
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Solving Eq. (26) for the saddle point. 

The second derivative is 

1 r~ dx' - 2t 3 
h"(#s) = - 4 ]~o [ W(x ' )  - #s] 3/2 ~ (L - Xo) 2 (28) 

If we now open up C into a vertical line through #~ we obtain for (25) 

f ( tJXo)  =- ~ exp - ~ fl[ U(L) - U(O)] 

x exp[- f lh(#s) ]  [ 2 ~ 1 1 / 2  (29) 

With the same small-time approximation one has 

h(#,) ~ #s t + (L - Xo)( - #~)1/2 _ (L - Xo) 2 
4t 

The final result is 

(L-Xo) 2] 
f ( t J X o ) =  Ct -3/2 exp 4-0~ ] 

L - -  x 0 
C 2(rt0)l/2 exp [ U(L)~2oU(X~ 1 

(30) 

(31) 

(32) 

The saddle point approximation requires that the saddle point #~ is 
sufficiently far from the poles; as these are all positive, it means that I#sJ 
must be larger than the width of the peak, which is determined by (28): 

2t ] ( L - x o ) 2 J  or Ot 
> ! (33) 

Thus (31) applies until t is so large that the exponential is indistinguishable 
from unity. 
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4. THE L O N G - T I M E  BEHAVIOR 

All eigenvalues /l, are positive, but some are more positive than 
others. In particular, the lowest one, /al, which determines the long-time 
behavior of f(tlXo), is very close to zero. To evaluate it, we insert the 
WKB expression (21), (22) into the eigenvalae equation (12) and obtain 

e 2~K(L,~)_ A �89 #1) (34) 
B �89 + K'(O, #11 

The left-hand side is very small and therefore so is the numerator on the 
right, so that 

[W(0)-/~111/2 = �89 g ' ( 0 ) -  U ' (0 )exp[ -2f lK(L,  #l)J (35) 

Squaring, omitting higher orders, and putting K(L,#I)~K(L,O ), we 
obtain 

#1 = g ' (0)2exp -2 f l  [W(x)] 1/2 d x  
) 

= U'(0) 2 exp -/3 [ U ' -  OU"/U'] dx 

= U'(O) U'(L) exp{ - f i [ U ( L ) -  U(0)] } (36) 

Hence the sum (19) contains the long-lived exponential exp(-#ll/O ) in 
agreement with (5). 

Suppose one begins with a small value of t, for which the result (31) 
was derived, and allows t to grow. The saddle point #s shifts to the right 
and reaches #1 when t equals 

l f j .  dx' fj, dx' (37) 
tl = 2  0 [ W ( x t ) ]  1/2''~ o Ut(x,)  

Subsequently f(tlXo) may be written as a residue of the pole /11 plus an 
integral over a contour C1 to the right of/~1. We compute the residue, i.e., 
the first term of (19). 

The numerator qS(Xo,#l) is given by (21), but the first term is 
negligible, as A/B is small according to (34). On the other hand, it is now 
necessary to reinstate the factor (23), which reduces to [1U'(x)]-l/2. 
Hence one finds, using the same algebra as in (36), 

~(Xo, #1)= [ U'(xo)/U'(O ) ] -1/2 B exp[-- flK(xo, 0)] 

= exp{ - �89 U(xo) - V(O)] (38) 
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To find the numerator 45(L, #1), one has to differentiate the exponent 
in (21) with respect to /~, but the resulting terms are exponentially small. 
In addition, one has to differentiate A and B; this produces one large term, 
which, including the factor (23), works out to 

[u , (L) l  1/2 
~b~(L,/~1) = [_ U'(0) J 8[K'(0,  0)] 3 exp[flK(L, 0)] 

= - [U'(0)  U ' (L)]  i exp fl[U(L)- U(0)] (39) 

Substitution of (38) and (39) yields for the first term of (19) 

1 I U(L)-U(O)]exp-S~t fl(tlXo) = ~ U'(O) U'(L) exp 0 0 (40) 

This is the well-known result obtained from the familiar calculation of the 
mean first-passage time as in (5). 

5. D I S C U S S I O N  

If U = 0 the diffusion equation (1) can be solved exactly. The result is 
(31), but also a second term appears, due to particles that are reflected by 
the boundary at x = 0. Such particles are absent here because for them the 
exponential factor in (32) would be exponentially smaller. It follows that 
(31) is made up of particles that have never visited the boundary at x = 0 .  
Consequently (31) is valid regardless of the boundary condition (2). 
Incidentally, one sees from this why it was necessary to require U'(x)> 0 
and also x0 > 0. The case x o = 0 can easily be treated by including the 
second term in (21). 

The integral of (31) is 

fof(tlxo) dt=exp[ U(L)~2?(x~ ] (41) 

This is the total probability for the first passage to take place within the 
short-time regime. Actually it is only an upper bound for the probability, 
since the integral ought to be extended up to the time given by (33) rather 
than up to oe. The integral of the long-time regime (40) equals unity, again 
with a correction for the short times. Thus the total probability for a short 
first-passage time is small, of the order (41): almost all first passages occur 
after a long time comparable to (5). The former never experience the 
bottom of the well, the latter move about in the well for a long time and 
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forget  their  s tar t ing po in t  Xo. Between bo th  regimes there is a t rans i t ion  
region not  covered by the calculat ions.  

O u r  condi t ion  U ( x ) >  0 for 0 ~< x ~< L can be re laxed so as to permi t  a 
r ounded  bar r ie r  top  and a flat well bo t tom.  The  shor t - t ime result  (31), (32) 
remains  valid, but  the long- t ime formula  must  be a me nde d  in the famil iar  
way. (~) 
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